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Fig. 1: Overview of Mirage. We study zero-shot transfer of policy across embodiments. Assume there is a policy trained on a source robot
(left). At test time, with an unseen target robot (middle), Mirage performs “cross-painting”—masking out the target robot in the image and
inpainting the source robot at the same end effector pose—using robot URDFs and a renderer. By creating an illusion as if the source robot
were performing the task (right), Mirage queries the source policy with the cross-painted image to obtain the source robot’s action. The target
robot then uses a forward dynamics model to obtain the desired end effector pose in the target robot frame and executes the steps with a
blocking controller. Mirage can successfully zero-shot transfer policies across the same robots with different grippers (bottom left), different
robots with the same gripper (bottom right), and different robots with different grippers (top).

Abstract—The ability to reuse collected data and transfer
trained policies between robots could alleviate the burden of
additional data collection and training. While existing approaches
such as pretraining plus finetuning and co-training show promise,
they do not generalize to robots unseen in training. Focusing
on common robot arms with similar workspaces and 2-jaw
grippers, we investigate the feasibility of zero-shot transfer.
Through simulation studies on 8 manipulation tasks, we find
that state-based Cartesian control policies can successfully zero-
shot transfer to a target robot after accounting for forward
dynamics. To address robot visual disparities for vision-based
policies, we introduce Mirage, which uses “cross-painting”—
masking out the unseen target robot and inpainting the seen
source robot—during execution in real time so that it appears
to the policy as if the trained source robot were performing
the task. Despite its simplicity, our extensive simulation and
physical experiments provide strong evidence that Mirage can
successfully zero-shot transfer between different robot arms and
grippers with only minimal performance degradation on a variety
of manipulation tasks such as picking, stacking, and assembly,
significantly outperforming a generalist policy.

I. INTRODUCTION

Consider a scenario where substantial efforts are invested
in training a vision-based policy on a Franka robot arm for a
manipulation task. The conventional paradigm of policy transfer
to another robot often involves collecting new data on the target
robot and finetuning the pretrained policy or retraining with a
combination of datasets. Collecting data and training policies
for each task and physical robot embodiment is time-consuming
and expensive. An exciting conjecture is that demonstration
data from different robot arms can be combined to learn policies
that are robust or more generalizable to different robots, such as
Franka, Universal, ABB, KUKA, and Fanuc arms [19]. While
scaling up shows great promise in in-distribution embodiments,
transferring policies to unseen embodiments remains elusive.

In this work, we ask the question: Is it possible to achieve
policy transfer without any target robot data? This poses
several challenges, as outlined in prior work [110], stemming
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from variations in kinematic configuration, control scheme,
camera viewpoint, and end-effector morphology. However,
commonalities exist among many robots in practice. Despite
differences in joint numbers, many robots popular in open-
sourced datasets [19] such as the Franka, xArm, Sawyer,
Kuka iiwa, and UR5 have similar workspaces and can be
controlled in the Cartesian space of the end effector with
millimeter-level accuracy. Similarly, while grippers may vary
in appearance, most use parallel jaws with similar shapes (but
differing dimensions).

Our key insight is that, for robots with similar workspaces
and many quasi-static tasks, the unseen target robot can achieve
relatively high success rates by directly querying the policy
trained on the seen source robot without the need for fine-
tuning. To do so, we set the source robot to the same pose
as the target robot using state information. The high success
rates hold for policies that are both open-loop and closed-loop,
both state-based and image-based, and trained using imitation
learning and reinforcement learning.

We present Mirage (Fig. 1), a novel cross-embodiment policy
transfer method that can zero-shot transfer policies trained on
one source robot to an unseen target robot. Mirage decouples
vision and control, allowing gaps between the source and target
robot to be addressed separately. To address visual differences,
Mirage employs “cross-painting” during execution, masking
out the target robot and inpainting the source robot at the same
pose, creating a mirage for the policy. Importantly, Mirage only
requires knowledge of robot base coordinate frames for visual
and state alignment. Mirage does not assume any demonstration
data on the target robot or paired images or trajectories between
the source and unseen target robots. To handle differences in
control gains, Mirage pairs the source robot policy with a
forward dynamics model and executes the action predicted by
the policy on the target robot with a high-gain or blocking
controller to accommodate varying control frequencies.

Through extensive experiments on 9 manipulation tasks
in both simulation and real across 6 different robot and
gripper setups, we show that Mirage, despite its simplicity,
is remarkably effective at transferring policies, achieving zero-
shot performance significantly higher than a state-of-the-art
generalist model [73]. To the best of our knowledge, this is
the first demonstration on real robots of zero-shot transfer of
visual manipulation skills beyond pushing tasks [41].

To summarize, our key contributions are:
1) A systematic simulation study analyzing the challenges

and potential for policy transfer between grippers and
arms;

2) Mirage, a novel zero-shot cross-embodiment policy trans-
fer method that uses cross-painting to bridge the visual
gap and forward dynamics to bridge the control gap;

3) Physical experiments with Franka and UR5 demonstrating
that Mirage successfully transfers between robots and
grippers on 4 manipulation tasks, suffering only minimal
performance degradation from the source policy and
significantly outperforming a state-of-the-art generalist
model.

II. RELATED WORK

A. Transfer across embodiments

Can data and models from various sources, including other
robots, tasks, environments [86, 117], and modalities be
transferred to new robots with differences in morphology,
control, and sensors? While some cases pose significant
disparities, such as a small soft robot with tactile sensors versus
a humanoid robot with RGB cameras, commonly used robot
arms share similarities in workspaces, grippers, and camera-
based manipulation tasks.
Transferring control dynamics. Previous work in control has
investigated cross-robot transfer of dynamics models [18, 34,
39, 78] and alignment-based transfer [6, 64, 65] is a commonly
used technique for trajectory tracking, where input-output data
points for both robots are collected and then aligned using
manifold alignment. The transformed data from the source robot
can then be used as initialization to accelerate learning of the
dynamics model of the target robot. Mirage does not focus
on trajectory tracking. We fit a dynamics model to the source
robot trajectory and use a high-gain or blocking controller on
the target robot during execution.
Transfer learning and cross-domain imitation methods use
finetuning to accelerate the learning process by leveraging data
from other robots [42, 83, 99, 123]. For example, assuming ac-
cess to a policy of the source robot, one can use Reinforcement
Learning (RL) to finetune the visual encoder [82, 98], the value
function [54], or the policy [59, 60] on the target robot. When
learning from videos of other other agents without access to
actions [3, 7, 61, 85, 85, 96, 104, 106, 108, 114], methods
such as explicit retargeting [75, 95], inverse RL [12, 116],
and goal-conditioned RL on a learned latent space [121]
have been explored. Assuming isometry between domains,
Fickinger et al. [30] train RL in the target domain by
using a trajectory in the source domain as a pseudo-reward.
Many other works assume data for both source and target
robots on a proxy task, learn correspondences if not already
available [2, 52, 79, 119], and then use the learned latent space
or paired trajectories as auxiliary rewards [2, 36, 56, 91] or
for adversarial training [32, 38, 111]. Unlike these methods,
Mirage does not assume access to target robot data on a proxy
task or paired trajectories, and directly reuses the source robot
policy.
Multi-task and Multi-robot training. If the target robot
is unknown but comes from a known distribution, such as
the distribution of the length of the arm links, kinematic
domain randomization [28] can be used to train a robot-agnostic
policy. Alternatively, the robot parameters such as kinematic
parameters [112], 6 DOF transforms for each joint [14],
and URDFs represented by a stack of point clouds [92] or
TSDF volumes [109] can be used to train a robot-conditioned
policy. Ghadirzadeh et al. [35] use meta-learning to infer
the latent vector for a new robot from few-shot trajectories,
and Noguchi et al. [72] treat grasped tools as part of the
embodiment to learn to grasp objects with objects. Other
work has also leveraged a known robot distribution to train



modular policies [22, 33, 47, 107, 120]. For example, Devin
et al. [22] train a policy head for each task and each robot,
and Furuta et al. [33] train an RL policy for each task and
each morphology combination and distill it into a transformer.
Others [43, 55, 66, 74, 84, 103] encode robot morphology as a
graph for locomotion. While these methods leverage simulation
to vary the robots in the known distribution, we do not seek
to train a policy with the intention of it being performant on a
distribution of robots. Instead, Mirage can transfer a specialized
policy trained on only one robot to an unseen target robot that
the policy is not intended to work on.

Yang et al. [110] study both the control and visual domain
gaps when transferring across robots. They use wrist cameras
to minimize the observation differences of the robot, learn
a multiheaded policy with robot-specific heads that capture
separate dynamics, and use contrastive learning to align
robot trajectories. In contrast, Mirage works with third-person
camera(s) and does not assume any target robot data to jointly
train a multi-robot policy. Another closely related work to
ours is Robot-Aware Visual Foresight [41]. The authors use
the known camera matrix and robot model to mask the robot
pixels, train a video-prediction model that only predicts the
world pixels, and use visual foresight [25, 31] during execution.
Similar to their method, we use robot URDFs to compute robot
pixels, but we not only mask out the target robot but also inpaint
the source robot. By doing so, we do not impose restrictions
on the policy class the source robot can use, allowing Mirage
to work with state-of-the-art source robot policies such as
diffusion policy [17] and successfully transfer them across real
robots beyond pushing tasks [41].

B. Learning from large datasets

Beyond targeted effort to transfer robot policies, recent work
has also explored use of large and diverse data [21, 26, 27,
29, 49, 58, 88, 102] to train visual encoders [63, 71, 105] and
policies that are generalizable to new objects, scenes, tasks,
as well as embodiments [1, 4, 10, 11, 15, 23, 46, 46, 48, 62,
76, 80, 89, 90, 93, 94, 97]. Dasari et al. [20] use a large
dataset of multiple robots to pretrain a visual dynamics model.
Most recently, several works [8, 19, 73, 77] pretrain large
transformers and show that co-training or finetuning the models
outperform policies trained only on in-domain data. However,
RPT [77] uses joint space actions, preventing it from zero-shot
transfer. While RT-X [19] and Octo [73] use Cartesian space
actions, they do not align action spaces or condition on the
robot coordinate frames and kinematics, preventing them from
working zero-shot on a new robot setup as they do not know
what action space to use. In this work, we conduct experiments
that show that leveraging the robot URDFs and aligning the
action spaces could enable even a single-robot specialist policy
to generalize zero-shot to a different robot.

A work that is closely related to ours is MimicGen [69].
Given novel object poses, they spatially transform human
demonstration trajectories in an object-centric way and let
the robot follow these generated trajectories to collect new
demonstrations. They illustrate that MimicGen can be used to

generate rollout data on Sawyer, IIWA, and UR5e arms even
when the original demonstrations were on the Franka, and the
generated data can be used to learn a target robot policy. In
contrast, Mirage does not assume an object-centric framework
and uses cross-painting for trained policies, eliminating the
requirements for demonstration trajectories on the target robot.

C. Image inpainting and augmentation in robotics

Visual domain randomization such as adding distractors
and changing the textures and lighting is commonly used to
bridge the sim2real gap [101]. Recently, enabled by generative
models, researchers have explored image editing such as adding
distractors and changing backgrounds as an additional form
of augmentation [16, 67, 115]. Black et al. [5] use a video
prediction model to generate goal images during execution.
Hirose et al. [40] augment the collected data to simulate another
robot’s observation from a different viewpoint. AR2-D2 [24]
renders a virtual AR robot in a scene observed by a camera to
replace the hand of a human manipulating objects; the result
appears as if the AR robot were manipulating the object. Bahl
et al. [3] use a video inpainting model to mask out human
hands and robot grippers. Mirage also inpaints the source robot,
and can optionally reproject the image into the camera angle
the policy is trained on, to create the illusion to the policy as
if the source robot were performing the task.

III. PROBLEM STATEMENT

We assume two robot arms, source S and target T , with
parallel-jaw grippers, known URDFs, and known isomorphic
kinematics. We assume the manipulation tasks of interest are in
both robots’ workspace and can be performed by both robots
using similar strategies without collision. Our goal is to transfer
a trained policy from the source robot to the target robot.

Prior work [110] has found aligning the action and observa-
tion spaces can facilitate policy transfer. Mirage leverages the
following assumptions and design choices to reduce the gap
between robots and enable zero-shot transfer:

1) We assume knowledge of the two robots’ coordinate
frames. To align the state and action spaces, we follow
prior work [110] and use the Cartesian space of the end
effector. This allows us to transfer between robots with
different numbers of joints and compensate for alternate
gripper shapes across embodiments.

2) We assume the target robot has a high-gain or blocking
controller that can reach desired poses relatively accurately
(within a few millimeters).

3) We assume knowledge of the camera parameters for both
domains. This allows us to render robots in a camera pose
that is within the distribution of the training image poses.

4) We assume that the background and lighting conditions
of the target robot are in the distribution of the source
dataset D or that the policy πS is robust to environmental
background changes, e.g., using techniques such as
background augmentation [16, 67, 115]. This allows us
to separate any challenges that arise due to changes in



Fig. 2: Simulation Tasks and Robots. The simulation evaluation utilizes the Robosuite simulator with Lift, Stack, Can Pick-and-Place, Two
Piece Assembly, and Square Peg Insertion tasks. Additionally, to study other policy classes, we evaluate policy transfers in ORBIT with a
block lifting task, and in RLBench with 2 tasks: Lifting a lid, and Pushing a button to turn on a lamp. For all policies, the source robot is the
Franka robot as shown in the first row, while the target robots for each of the tasks are shown in the second row.

the background environment and focus on the impact of
visual differences between robots on policy performance.

We model each robot manipulation task of interest as a
Markov Decision Process. We consider the setting where
there is a policy πS trained on a dataset of the source robot
D = {(sS1 , oS1 , aS1 , ..., sSHi

, oSHi
)Ni } consisting of N trajectories,

where sSt is the proprioceptive state of the robot at timestep
t, oSt is the third-person camera observation(s), and aSt is the
action. Given a source policy aSt+1 = πS(s

S
t , o

S
t ), we would

like to transform it into a policy aTt+1 = πT (s
T
t , o

T
t ) that takes

as inputs the states and observations of the target robot without
demonstration or finetuning trajectory data on the target robot.

IV. STATE-BASED TRANSFER EXPERIMENTS

As a first step in studying the feasibility of zero-shot transfer,
we seek to separate the domain gaps of the control from the
visuals. To motivate the study, imagine there is a source robot
(“oracle”) teaching a target robot to perform a task side by
side in a duplicate environment. At each time step, the source
robot sees the world state (pr, po) of the target environment,
where pr and po are the poses of the robot end effector and the
objects. Then, it puts its objects and end effector to the same
poses, and uses its policy to move its end effector to a new
pose p′r. The target robot observes the source robot and also
moves its end effector there. In this manner, the target robot
mirrors what the source robot does step by step to perform the
task. We ask: can the target robot successfully complete a task
by querying the source robot’s policy in this fashion?

To answer this question, we consider 8 tasks across 3
simulators (Robosuite [122], ORBIT [70], and RLBench [44])
(Fig. 2) with policies trained using imitation learning for
Robosuite tasks and reinforcement learning for ORBIT and
RLBench. Robosuite and ORBIT policies use closed-loop
control (a trajectory consists of >50 time steps), while for
RLBench, the policies use open-loop control (a trajectory
consists of a few waypoints). For all tasks, we train the source
state-based policy on the Franka robot and evaluate the success

rates on different target robots using the test-time execution
strategy mentioned above.

As the coordinate frames between robots are not necessarily
the same, we use the known rigid transform TS

T between the
frames to convert the end-effector and object poses at each time
step from the target frame to the source frame pSr = TS

T pTr
and pSo = TS

T pTo , before querying the source robot’s policy
aS = πS(p

S
r , p

S
o ). We step the action aS on the source robot

in the simulator to obtain the achieved end effector pose pSr
′,

and then use the high-gain or blocking controller on the target
robot to reach the equivalent desired pose pTr

′
= T T

S pSr
′.

A. Implementation Details

For Robosuite, we choose 5 tasks: Lift, Stack, Can, Two
Piece Assembly, and Square. We use Robomimic [68] to train
an LSTM policy for each task on the provided demonstration
data [69, 122]. We evaluate the performances on 5 different
robots, including UR5e, Kuka iiwa, Kinova Gen3, Sawyer, and
Jaco. Note that Jaco has a 3-jaw gripper, but we include it for
comparison. The source policy predicts delta Cartesian actions
and we use the operation space controller [50] on the target
robot to servo to the pose the source robot reaches and enforce
that the norm of the error from the desired pose (position (in
m) and quaternion) is less than 0.015 at each timestep.

For ORBIT, we use the Lift task. We train an RL policy using
PPO [87] on the Franka robot and evaluate on the UR5. Similar
to Robosuite, we use the absolute pose controller to servo the
desired pose at each step during execution. For RLBench, we
use Coarse-to-Fine Q-attention [45] to learn the key poses and
use its end-effector-pose-via-planning controller to reach the
desired pose in an open-loop fashion. The policy also takes in
camera observations and the scene point cloud. We study 2
tasks: take the lid off a saucepan (“Unlid Pan”) and turn on a
lamp (“Lamp On”), and evaluate on the UR5 and Sawyer.

B. Study Results

Table I shows that when the target robots have the same
gripper as the source robot, most unseen target robots achieve



Task Source (Franka) Franka Gripper on Target Robot Default Gripper on Target Robot

UR5e IIWA Kinova Gen3 Sawyer Jaco UR5e IIWA Kinova Gen3 Sawyer Jaco∗

Lift (Robosuite) 100% 99% 100% 100% 100% 100% 100% 100% 99% 84% 95%
Stack 95% 96% 94% 96% 94% 96% 86% 87% 81% 85% 66%
Can 98% 98% 97% 97% 96% 96% 88% 90% 83% 83% 55%

Two Piece Assembly 96% 91% 89% 88% 92% 90% 89% 70% 92% 90% 34%
Square 81% 74% 72% 34% 83% 21% 69% 48% 49% 75% 1%

Lift (ORBIT) 100% - - - - - 89% - - - -

Unlid Pan 100% - - - - - 100% - - 90% -
Lamp On 88% - - - - - 64% - - 68% -

TABLE I: State-Based Policy Transfer Experiment Results. We evaluate state-based policies trained for each task using a Franka robot
across five different robots equipped either with the original Franka gripper or with each target robot’s default gripper. Results suggest that
most unseen target robots can successfully perform the tasks using the source robot as its guide for where to move its gripper. ∗Jaco has a
3-jaw gripper, which explains its lower success rates.

very high task success rates. This suggests that the kinematic
differences among the robot arms are relatively insignificant.
Using the robots’ default factory 2-jaw grippers, there is a mild
performance drop of around 10-25%, but many target robots
can still successfully perform the task using the source robot as
its guide for where to move its gripper. In comparison, with a
3-jaw gripper, Jaco’s success rates are significantly lower than
the others’, especially on more challenging tasks, where the
grasp configuration required for three jaws is different than the
parallel jaw grippers. Comparing the robots, we see that the
differences in the performance are roughly consistent across
tasks, indicating that gripper properties (e.g., size and friction
of the gripper pads) affect how easy it is for the robots to
grasp and manipulate objects, but the general task strategy is
similar. This holds for policies trained using IL and RL, as
well as open loop and closed loop.

Additionally, we notice that the more robust the source policy
is, the smaller the performance drop when transferring to other
robots. We qualitatively observe that this can be attributed to
the extra space the policy leaves between the object and its
gripper as well as its retrying behavior. Less robust source
policies leave little room for error, while more robust ones
tend to retry even if the target robot fails to grasp the object
the first time.

To study the impact of differences in the robot controller
dynamics, we also experiment with executing the delta action
a on the target robot with the non-blocking controller directly
instead of using a blocking controller to reach the desired
pose pTr

′. Results are included in the Appendix. We see that
there is a significant drop in performance, indicating that the
difference in the forward dynamics between robots cannot
be ignored when transferring policies, and that leveraging a
blocking controller on the target robot is an effective way to
mitigate this difference.

V. MIRAGE: A CROSS-EMBODIMENT TRANSFER STRATEGY
FOR VISION-BASED POLICIES

Motivated by the observation that target robots can suc-
cessfully perform tasks to a large extent simply by querying
a state-based source policy on an oracle source robot that
mirrors its pose and obtains the next pose, we seek to extend

this strategy to vision-based policies. To transfer vision-based
policies, we need to account for the additional difference of
robot visuals in addition to the controller forward dynamics.

We propose Mirage, a strategy to zero-shot transfer a trained
vision-based policy from the source robot to the target robot.
The key idea is “cross-painting”: replacing the target robot
with the source robot in the camera observations at test time
so that it appears to the policy as if the source robot were
performing the task.

A. Bridging the Visual Gap

To replace the robots, we leverage the knowledge of the robot
URDFs and camera poses to perform cross-painting at test time.
Fig. 3 illustrates the pipeline of Mirage. First, given known
camera transforms, we can optionally reproject the images
from the target domain to the source domain if depth sensing
is available at test time. Next, given the image observation
oT and joint angles of the target robot, we use a renderer
to determine which image pixels correspond to the source
robot and mask out these pixels. Then, we inpaint the missing
pixels. We use the fast marching inpainting method [9, 100]
for simplicity and speed, but other choices such as off-the-shelf
image or video inpainting networks [57, 113] could also work.
Another potential approach is to first take an offline picture of
the background scene with as much of the target robot arm
moved out of the camera frame as possible, and at test time
just to fill in the masked-out region with the corresponding
pixels from the background image, but this would only apply
to fixed third-person cameras. Finally, we use the URDF of
the source robot to solve for the joint angles that would put
its end effector at the same pose as that of the target robot,
render it using a simulator, and overlay it onto the target image.
For simulation experiments, we take into account potential
occlusions between the robot and objects by comparing the
pixel-wise depth values between the camera observation of the
scene and the rendered robot. For real experiments, however,
we do not use depth due to noise and imprecision in the camera
observations. For the gripper, we similarly compute and set
the joints of the source robot gripper in the renderer so that its
width would roughly match that of the target robot’s gripper.
We denote this cross-painted image oT →S .



Fig. 3: Illustration of Mirage’s pipeline. We reproject the camera from the target frame to the source frame if there is a non-negligible
camera angle change and then apply cross-painting: (1) use the segmentation mask provided by Gazebo to mask out the target robot, (2)
apply the fast marching [100] algorithm to fill in the missing pixels, and (3) overlay Gazebo’s rendering of the source robot URDF onto the
image. The resulting image is fed into the source robot’s policy to obtain the action, which is executed after a coordinate frame transform.

Task Source (Franka) UR5e (Franka / Default Gripper) Kinova Gen3 (Franka / Default Gripper)

Oracle Naive 0-shot Mirage Oracle Naive 0-shot Mirage

Lift 97% 98% / 98% 55% / 0% 88% / 76% 100% / 97% 48% / 1% 88% / 72%
Stack 97% 97% / 95% 17% / 5% 84% / 80% 99% / 96% 12 % / 2% 76% / 80%
Can 94% 71% / 56% 13% / 1% 68% / 48% 58% / 44% 15% / 2% 40% / 32%

Two Piece Assembly 99% 97% / 99% 16% / 2% 96% / 100% 89% / 91% 32% / 25% 84% / 80%
Square 70% 73% / 69% 22% / 3% 68% / 52% 48% / 32% 8% / 2% 40% / 40%

TABLE II: Mirage Results on Transferring Vision-Based Policies in Simulation. For each task and robot arm combination, the Oracle
represents the performance of a vision-based policy assuming access to a ground truth rendering of the source robot given the state of the
target robot, the Naive 0-shot method directly passes the visual observation of the target robot to the policy, and Mirage uses cross-painting
to generate the visual inputs for the policy. For each method, the first number represents the success rate when the target robot uses the
source robot (Franka) gripper and the second number corresponds to using the target robot’s default gripper (Robotiq gripper).

B. Bridging the Control Gap

To bridge the difference of the controllers, we use a forward
dynamics model to convert the source robot action into the
next pose to achieve, and use a high-gain or blocking controller
on the target robot to reach the pose. We use the source robot
trajectory data D to fit a forward dynamics model f on the
transitions: f(pSr,t, a

S
t ) = pSr,t+1. During the target robot’s

execution, the desired target pose is thus pTr,t+1 = T T
S pSr,t+1 =

T T
S f(pSr,t, a

S
t ) = T T

S f(pSr,t, πS(p
S
r,t, o

T →S)).

VI. VISION-BASED POLICY TRANSFER EXPERIMENTS

We aim to answer the following questions:
1) Can cross-painting bridge the visual gap between robots?
2) Can Mirage successfully zero-shot transfer trained vision-

based policies from one robot to another?
3) To what extent does each component of Mirage affect the

transfer performance?

A. Simulation Experiments

We first study the effect of cross-painting on mitigating the
visual gap between robots. We focus on closed-loop policies.
Based on Table I, we choose UR5e and Kinova Gen3 as
two representative robots that show high potential for reusing
the source robot policies. We use the ground-truth forward

dynamics and compare the success rates of the target robot
using cross-inpainting with no inpainting and ground-truth
oracle rendering.

To create a sim-to-sim gap, we choose Gazebo [53] as
our renderer. We manually position spotlights in the Gazebo
environment to simulate the lighting in Robosuite for similar
robot renderings. Similar to Sec. IV, we first train the
source robot policies with behavior cloning on the provided
demonstration data for each task (200 demos for Lift and Can
from Robomimic [68], 1000 demos for the other tasks from
MimicGen [69]), using the LSTM architecture with the ResNet-
18 visual encoder [68]. The policies utilize 84x84 images, and
Mirage operates at approximately 40 Hz to cross-paint the
images.

Table II shows the results. Similar to Table I, transferring
between robots but with the same gripper has higher success
rates than transferring to a different gripper in most cases. For
UR5e, Mirage has a 8-22% drop in performance compared to
querying the source policy on an oracle rendering. There is a
similar gap of at most 25% between using an oracle and using
Mirage on Kinova Gen3. In all cases, Mirage significantly
outperforms the naive 0-shot performance without any visual
gap mitigation. This suggests that cross-painting can effectively
bridge the visual differences of the robots.



Fig. 4: Trajectory Rollouts of Simulated (Left) and Real (Right) Tasks. For each task, the top row shows the actual observations of the
target robot during the trajectory rollout, and the bottom row shows the cross-painted images generated by Mirage that are passed to the
source robot policy πS to obtain the desired target robot pose pTr,t+1.

Task (Source Gripper) Source (Franka) Different Gripper Different Robot (UR5)

Baseline Octo Baseline 0-shot Octo Mirage Baseline 0-shot Octo Mirage

Tiger Pick-and-Place (Robotiq) 90% 70% 60% 70% 90% 50% 10% 90%
Open Drawer (Franka) 80% 40% 0% 20% 70% 0% 0% 60%

Stack Cup (Franka) 80% 30% 10% 20% 60% 0% 0% 50%
Toaster (Robotiq) 60% 20% 20% 0% 40% 0% 0% 30%

TABLE III: Mirage Results on Transferring Vision-Based Policies in Real. We evaluate Mirage on 4 tasks in 2 settings: Different
Gripper: Transferring policies between the Franka gripper and the Robotiq 2F-85 gripper on a Franka robot. Different Robot: Using the
Franka with either gripper as the source robot, and the UR5 robot with the Robotiq gripper as the target robot. Baseline/Baseline 0-shot:
Separate Diffusion Policy models [17] trained on the source robot data for each task and evaluated on the source robot or zero-shot on the
target embodiments. Octo: Octo Base model [73] finetuned on the source robot data from all tasks together and evaluated on the source robot
or zero-shot on the target embodiments. Mirage: Evaluation of zero-shot transfer to the target embodiments using Mirage with the source
policy being the corresponding baseline Diffusion Policy models.

B. Physical Experiments

We evaluate Mirage across 3 different embodiments, Franka
with Franka and Robotiq 2F-85 grippers, and UR5 with Robotiq
2F-85 gripper. We evaluate on 4 manipulation tasks: (1) Pick
up a stuffed animal (tiger) and put it into a bowl [13], (2) open
a toy drawer [102], (3) stack one cup into another [13], and
(4) put a pepper into a toaster and close its glass door [73].
We select Franka as the source robot. For tasks (2) and (3),
the source robot uses the Franka gripper, while for the others,
the source robot is equipped with the Robotiq gripper.

We study policy transfer in 2 different settings. The first
setting is transferring between grippers only on the Franka
robot. The second setting involves robot transfer, where we

use the Franka with either gripper as the source robot, and the
UR5 with the Robotiq 2F-85 as the target robot. We use one
ZED 2 camera positioned from the side for each robot.

For each task, we first use an Oculus controller to collect
between 200-400 human demonstration trajectories on the
source robot using VR teleoperation at 15 Hz [51]. We then
train a separate diffusion policy [17] for each task, which
we use as the source policy that we seek to transfer. On the
target UR5 robot, we place the camera(s) at similar poses,
with up to 4 cm differences from those in the source setup.
Similar to Sec. VI-A, we use Gazebo as our renderer. We use
a per-dimension linear forward dynamics model and use the
demonstration data to fit the regression coefficients.



We compare Mirage to two baselines: naive 0-shot transfer
and Octo finetuning [73]. Octo is a recently released state-of-
the-art generalist policy for robotic manipulation, pre-trained on
800k robot episodes from the Open X-Embodiment dataset [19],
including trajectories collected on Franka and UR5. For both
methods, we use the known mapping between the robot
coordinate frames to convert the end-effector poses (e.g., there
is a 45◦ offset between the Franka gripper and Robotiq gripper
when being installed on the Franka robot). We also use the
same fitted forward dynamics model to account for controller
differences, and use a blocking controller on the UR5 to reach
the desired poses.

In the naive 0-shot transfer baseline, we directly apply the
source policy (i.e., the task-specific diffusion policy trained
on the source robot only) to the target embodiment for each
task, after accounting for the coordinate frame and control
differences as mentioned above. For the Octo model, we take
the pretrained Base model (93M parameters) and finetune all
weights on the combined 4-task demonstration data of the
source robot instead of finetuning for each task separately. For
both diffusion policy and Octo model, the image observation
is the third-person camera view and the proprioception input is
the Cartesian position of the end effector and the gripper
position. The action output is also the Cartesian position
and gripper position. For the Octo model, we use language
goal conditioning. We evaluate both baseline models on all 3
robot setups: Source (Franka robot + Franka/Robotiq gripper),
Different Gripper (Franka robot + the other gripper), and
Different Robot (UR5 + Robotiq gripper).

Table III shows the results. We can see that, for both gripper
transfer and robot (and gripper) transfer, Mirage achieves
strong zero-shot performance, significantly outperforming both
baselines. Similar to Tables I and II, the stronger the source
policy is, the smaller the performance gap is during transfer.
Interestingly, unlike Tables I and II, we do not observe that
transferring between robots with the same gripper achieves
higher performance than transferring between grippers only. We
hypothesize that this is due to the minor scene setup differences
that cause a natural drop in policy performance. On the other
hand, the failure modes we observe on the different robots or
grippers are all very similar to those from the source policy
on the source robot, such as not dropping the cup high enough
during cup stacking or not keeping the gripper low enough
when closing the door of the toaster oven.

Comparing the two baselines, task-specific Diffusion policies
achieve stronger performance on the source robot it is trained
on, while Octo achieves better success rates on most tasks
when the grippers are swapped. Still, Octo tends to miss more
grasps or gets stuck, resulting in a lower success rate than
Mirage by 20% to 50%. When being evaluated on the UR5,
neither baselines are able to achieve any success on the 3 more
difficult tasks.

C. Sensitivity Analysis of Mirage

We examine the sensitivity of policy performance to the
various components of Mirage using the Tiger Pick-and-Place

Component Factor Variation Success Rate

Visual

Calibration Error
~10 pixels 80%

~30 pixels 50%

Luminance
+50 90%

-50 80%

2 cameras
Source 80%

Target 70%

Background Different 0%

Control
Gain

x2 60%

x0.5 90%

Offset 8cm 0%

TABLE IV: Sensitivity of Mirage Components on Policy Perfor-
mance on the Tiger Pick-and-Place Task. For the visual components,
we study the effect of camera calibration error, the luminance of
inpainted robot rendering, changes in the background between the
source and target, and the performance on a 2-camera setup. For the
control components, we evaluate sensitivity of Mirage to the control
gain of the target robot controller and the z-offset in the proprioceptive
values.

task. For the visual components, we study the effect of camera
calibration error on the target robot, the luminance of the
rendered robot, and background changes between the target
and source robots. To study the effect of camera calibration,
we add offsets to the masks and inpainted robots. As the
calibration error increases, the segmentation masks become
less accurate and leave parts of the robot unmasked. This leads
to cross-painted images to include remnants of the target robot
(see Fig. 5(a)). Table IV shows that large artifacts result in non-
negligible policy performance degradation. For the luminance
effect, we adjust the inpainted pixels’ luminance by an offset
amount, and Table IV shows that the trained policy is relatively
robust to it. For the background change, we evaluate Mirage
under a different background (black) from what the policy is
trained on (light background), and we find that Mirage does not
mitigate the effect of background changes. Additionally, we add
another camera in the front view (see Fig. 6), train a Diffusion
Policy on both cameras’ observations, and apply Mirage to
cross-paint both images during test time. Table IV shows that
the target embodiment (UR5 + Robotiq) performance is close
to the source, indicating that our method is flexible with the
number of cameras.

We also examine the sensitivity to the control pipelines of
Mirage. To simulate noises in the forward dynamics model and
inaccuracy in the target robot’s controller, we adjust the control
gain and find that large values affect performance. Additionally,
when the target robot’s proprioceptive values are shifted due to
offsets, the trained policy’s performance drastically decreases.
This is not surprising as the policy is trained with matching
proprioceptive values and image observations, and large offsets
in the proprioceptive values correspond to distribution shifts
in the state input, which Mirage does not mitigate.

Additionally, we evaluate the robustness of Mirage to
changes in camera angles between the source and target robot
setups, and in other words, the effectiveness of Mirage’s camera



Fig. 5: (a) An example of camera calibration error resulting in failure
to mask the target robot out; (b) An example of the artifacts introduced
due to large changes in camera angles.

Fig. 6: The front camera angle in the 2-camera experiment in Table IV.
Top: The actual observations of the target robot during the rollout;
Bottom: the cross-painted images generated by Mirage.

reprojection step from the target image back to the source
camera pose. We select 3 levels of camera pose differences:

• Small Differences: Up to 1 cm in total translation and 5◦

in total rotation mismatches;
• Medium Differences: Up to 5 cm in total translation and

15◦ in total rotation mismatches;
• Large Differences: Up to 10 cm in total translation and

15◦ in total rotation mismatches;
For each level of target camera angles, we compare the

performance of the policy with and without the camera
reprojection step (Mirage and “w/o reproj.” respectively) both
on the source robot setup and on the Different Gripper setup.
Specifically, for the source robot setup, no cross-painting
is needed, so Mirage is effectively just camera reprojection.
For the different gripper setup, cross-painting is applied after
reprojection, while “w/o reproj.” directly applies cross-painting
in the target camera pose instead of in the source camera pose.

Table V shows that applying camera reprojection has a 20-
30% improvement in the success rates when there are medium
to large differences between the camera poses of the source
and the target. When the difference increases, there are fewer
points projected back to the source image frame, resulting in
more missing pixels being inpainted. This leads to blurriness
and artifacts close to the boundary of the images (see Fig. 5(b)),
making it more likely for the policy to miss the grasp.

VII. CONCLUSION

We propose Mirage, a novel algorithm for zero-shot transfer
of manipulation policies to unseen robot embodiments. Mirage
relies on two key ingredients: (1) using robot URDFs and
renderers to mitigate the visual differences through cross-
painting, and (2) choosing the end effector Cartesian pose as

Camera Pose Change Source Different Gripper

w/o reproj. Mirage w/o reproj. Mirage

Small (1 cm + 5◦) 90% 90% 90% 90%
Medium (5 cm + 15◦) 60% 80% 50% 80%
Large (10 cm + 15◦) 30% 50% 20% 40%

TABLE V: Mirage Effectiveness of Camera Reprojection. We
evaluate Mirage with and without the camera reprojection on the
Tiger Pick-and-Place task with 3 levels of camera pose changes: ≤
1 cm and ≤ 5◦, ≤ 5 cm and ≤ 15◦, ≤ 10 cm and ≤ 15◦. Results
suggest that, when there are medium to large differences between
camera poses, applying camera reprojection is beneficial.

the state and action spaces and using knowledge of the robot
coordinate frames to align the source and target robots. Through
both simulation and physical experiments across 9 tasks, we
find that Mirage can successfully enable zero-shot transfer
across grippers and robot arms, significantly outperforming a
state-of-the-art generalist policy.

Limitations and future work. To enable zero-shot transfer,
Mirage relies on knowledge of the robots and setups such
as the robot URDFs, coordinate frames, and camera matrices.
Also, since we use a blocking OSC controller during execution,
Mirage is most suitable for quasistatic tasks. Additionally, we
do not consider transferring between different backgrounds.
Future work can explore combining Mirage with orthogonal
approaches such as augmentation and scaling to enable policies
to be robust to background changes.
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APPENDIX

We provide the following additional results and details in
this appendix:

• Section A: State-based transfer experiment results, using
the same delta actions on the target robot instead of a
blocking controller, and trajectory playback results;

• Section B: Additional implementation details of the cross-
painting step of Mirage;

• Section C: Additional experiments using diffusion models
to improve the visual qualities of the cross-painted robot.

APPENDIX A
DELTA CONTROL AND TRAJECTORY PLAYBACK

In Section IV-B Table I, we see that target robots can achieve
high task success rates by querying the source robot policy
and referencing the source robot for desired poses. Specifically,
we use a blocking controller with absolute pose commands.
In this section, we compare and experiment with executing
the same delta action from the policy directly on the target
robot with a non-blocking controller. Table VI shows that
there is a significant drop in performance, indicating that the
difference in the forward dynamics between robots cannot
be ignored when transferring policies and that leveraging a
blocking controller on the target robot is an effective way to
mitigate this difference.

Additionally, we compare querying a source robot policy
with playing back successful source robot trajectories. Since
we have shown that executing the same delta actions as the
source robot does not transfer well, we use the achieved
poses by the source robots in the demonstrated trajectories
paired with blocking Cartesian controllers on the target robots.
Table VII shows the results. We see that, compared with Table I,
the performances are similar to those using the source robot
policies. This suggests that these tasks can be achieved by those
target robots using the same strategy. In fact, this is similar
to the data generation strategy adopted by MimicGen [69], in
which the authors roll out the (transformed) trajectories on
the target robots and filter out those unsuccessful ones and
then train a model on the rest. Comparing playing back human
demonstration trajectories and querying policies on the source
robot, we observe that in some cases where the learned policies
are brittle or suboptimal, they leave less room for error and
are less robust to changes in the gripper or tracking errors. On
the other hand, good learned policies can potentially adapt to
tracking errors, adjust their poses, and retry grasps if necessary,
thus outperforming trajectory playback in some cases.

APPENDIX B
ADDITIONAL IMPLEMENTATION DETAILS OF MIRAGE

In this section, we detail the inpainting step in the cross-
painting process of Mirage, and its sensitivity to calibration
errors. Once we have used the segmentation mask provided by
Gazebo to black out the target robot, we use Fast Marching
[100] algorithm to fill in the black pixels. Specifically, we use
a neighborhood radius of 3 pixels and the Telea inpainting
method, which is based on a fast marching algorithm [100].

Fig. 7: Robot cross-painting with diffusion generation. We utilize
a ControlNet to transfer the pre-trained Stable Diffusion into the
robotics domain. The upper part presents the training phase, in which
we finetune the parameters of ControlNet while keeping the Stable
Diffusion frozen using a masked reconstruction objective. The bottom
part presents the inference phase, where a URDF.

While the filled-in pixels appear blurry, they generally match
the color scheme of the rest of the image when the calibration
error is low. However, with higher calibration errors, the
segmentation masks become less accurate, resulting in remnants
of the target robot in the cross-painted images (see Fig. 5(a)).
To mitigate this issue, we dilate the segmentation masks to
ensure that the target robot is completely blacked out even
with calibration errors. With moderate to low calibration errors,
we dilate the robot arm segmentation mask with a 3x3 kernel
for 20 iterations and the gripper segmentation mask for 10
iterations. However, when the calibration error is higher, we
dilate the arm and gripper segmentation masks by 40 and 20
iterations respectively. The gripper mask is dilated significantly
less than the robot arm mask because the gripper is located
near the objects we perform tasks on. Too much dilation would
blur the objects that the robot needs to interact with, leading
to worse performance.

APPENDIX C
IMPROVING VISUAL QUALITIES WITH DIFFUSION MODELS

Considering the advanced state of diffusion models in
generating high-quality images, it is natural to ask whether
we can leverage diffusion models to bridge the visual gaps.
Specifically, there is still a small visual gap between the



Task Source (Franka) Franka Gripper on Target Robot Default Gripper on Target Robot

UR5e IIWA Kinova Gen3 Sawyer Jaco UR5e IIWA Kinova Gen3 Sawyer Jaco

Lift (Robosuite) 100% 91% 94% 96% 98% 96% 99% 53% 98% 72% 63%
Stack 95% 36% 39% 74% 60% 36% 41% 28% 43% 40% 38%
Can 98% 87% 93% 89% 78% 86% 90% 25% 73% 41% 60%

Two Piece Assembly 96% 44% 65% 54% 43% 41% 44% 45% 48% 29% 15%
Square 81% 10% 15% 3% 5% 9% 6% 1% 2% 5% 0%

TABLE VI: State-Based Transfer Experiment with Delta Actions. We evaluate state-based policies trained on a Franka robot for each task
across five different robots equipped either with the original Franka gripper or with each target robot’s default gripper. The target robot
executes the same delta Cartesian action as the source Franka robot instead of reaching the same absolute pose.

Task Source (Franka) UR5e IIWA Kinova Gen3 Sawyer Jaco

Lift (Robosuite) 100% 100% 99% 100% 85% 90%
Stack 100% 100% 100% 89% 76% 50%
Can 100% 80% 75% 50% 80% 54%

Two Piece Assembly 100% 98% 90% 94% 93% 69%
Square 100% 73% 43% 27% 82% 2%

TABLE VII: Success Rates of Target Robots Playing Back the Source Robot Trajectories. Instead of executing the source robot policy,
we evaluate the success rates of target robots performing trajectory playback. Specifically, we use the robot’s blocking controller with the
achieved pose of the source robot as the target pose instead of performing the same delta actions.

rendered URDF oT →S and the oracle image oS . However,
since the large-scale image-text pair LAION dataset does not
contain many robotics images, pre-trained Stable Diffusion [81]
models suffer from generalizing to robotics domain zero-shot.

We explore using diffusion models to improve the visual
quality of the URDF cross-painted images of Mirage. Specifi-
cally, instead of directly finetuning the original Stable Diffusion
model, we tune a ControlNet [118] to bridge this gap, as
shown in Fig. 7. Additionally, we adopt a self-supervised
masking-reconstruction training paradigm [37]. Specifically,
during training, the ControlNet takes in a masked image of
the source robot oS and the goal is to reconstruct oS . During
inference, we condition the ControlNet on a URDF cross-
painted image oT →S but without the fast marching inpaint
step (i.e., leaving the masked out pixels that are not covered
by the source robot as black) to generate a visually improved
image that is ideally closer to oS .

We qualitatively experiment with and without adding the
diffusion model on top of the URDF cross-painted images.
While we find that the robot looks visually more realistic than
the analytically rendered images, the policy performance is
about the same. Since diffusion generation takes a significant
amount of time at each time step, we opt not to integrate that
part into Mirage pipeline. We leave further investigation of the
potential benefit of diffusion models to future work.
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